Your browser doesn't support javascript.
loading
Sparse coding via thresholding and local competition in neural circuits.
Rozell, Christopher J; Johnson, Don H; Baraniuk, Richard G; Olshausen, Bruno A.
Afiliação
  • Rozell CJ; Department of Electrical and Computer Engineering, Rice University, Houston, TX 77251-1892, U.S.A. crozell@gatech.edu
Neural Comput ; 20(10): 2526-63, 2008 Oct.
Article em En | MEDLINE | ID: mdl-18439138
While evidence indicates that neural systems may be employing sparse approximations to represent sensed stimuli, the mechanisms underlying this ability are not understood. We describe a locally competitive algorithm (LCA) that solves a collection of sparse coding principles minimizing a weighted combination of mean-squared error and a coefficient cost function. LCAs are designed to be implemented in a dynamical system composed of many neuron-like elements operating in parallel. These algorithms use thresholding functions to induce local (usually one-way) inhibitory competitions between nodes to produce sparse representations. LCAs produce coefficients with sparsity levels comparable to the most popular centralized sparse coding algorithms while being readily suited for neural implementation. Additionally, LCA coefficients for video sequences demonstrate inertial properties that are both qualitatively and quantitatively more regular (i.e., smoother and more predictable) than the coefficients produced by greedy algorithms.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Neurológicos / Neurônios Tipo de estudo: Prognostic_studies Idioma: En Revista: Neural Comput Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Neurológicos / Neurônios Tipo de estudo: Prognostic_studies Idioma: En Revista: Neural Comput Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2008 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos