Combining experts in order to identify binding sites in yeast and mouse genomic data.
Neural Netw
; 21(6): 856-61, 2008 Aug.
Article
em En
| MEDLINE
| ID: mdl-18710795
The identification of cis-regulatory binding sites in DNA is a difficult problem in computational biology. To obtain a full understanding of the complex machinery embodied in genetic regulatory networks it is necessary to know both the identity of the regulatory transcription factors and the location of their binding sites in the genome. We show that using an SVM together with data sampling to classify the combination of the results of individual algorithms specialised for the prediction of binding site locations, can produce significant improvements upon the original algorithms. The resulting classifier produces fewer false positive predictions and so reduces the expensive experimental procedure of verifying the predictions.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Fatores de Transcrição
/
Leveduras
/
Algoritmos
/
Genoma
/
Biologia Computacional
/
Camundongos
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Neural Netw
Assunto da revista:
NEUROLOGIA
Ano de publicação:
2008
Tipo de documento:
Article
País de publicação:
Estados Unidos