Your browser doesn't support javascript.
loading
Geostatistical analysis in clustering fMRI time series.
Ye, Jun; Lazar, Nicole A; Li, Yehua.
Afiliação
  • Ye J; Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA. athensye@yahoo.com
Stat Med ; 28(19): 2490-508, 2009 Aug 30.
Article em En | MEDLINE | ID: mdl-19521974
Clustering of functional magnetic resonance imaging (fMRI) time series--either directly or through characteristic features such as the cross-correlation with the experimental protocol signal--has been extensively used for the identification of active regions in the brain. Both approaches have drawbacks; clustering of the time series themselves may identify voxels with similar temporal behavior that is unrelated to the stimulus, whereas cross-correlation requires knowledge of the stimulus presentation protocol. In this paper we propose the use of autocorrelation structure instead--an idea borrowed from geostatistics; this approach does not suffer from the deficits associated with previous clustering methods. We first formalize the traditional classification methods as three steps: feature extraction, choice of classification metric and choice of classification algorithm. The use of different characteristics to effect the clustering (cross-correlation, autocorrelation, and so forth) relates to the first of these three steps. We then demonstrate the efficacy of autocorrelation clustering on a simple visual task and on resting data. A byproduct of our analysis is the finding that masking prior to clustering, as is commonly done, may degrade the quality of the discovered clusters, and we offer an explanation for this phenomenon.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Análise por Conglomerados Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Imageamento por Ressonância Magnética / Análise por Conglomerados Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2009 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido