Your browser doesn't support javascript.
loading
[Modeling critical episodes of air pollution by PM10 in Santiago, Chile. Comparison of the predictive efficiency of parametric and non-parametric statistical models]. / Modelación de episodios críticos de contaminación por material particulado (PM10) en Santiago de Chile. Comparación de la eficiencia predictiva de los modelos paramétricos y no paramétricos.
Alvarado, Sergio A; Silva, Claudio S; Cáceres, Dante D.
Afiliação
  • Alvarado SA; División de Bioestadística, Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago de Chile, Chile. salvarado@med.uchile.cl
Gac Sanit ; 24(6): 466-72, 2010.
Article em Es | MEDLINE | ID: mdl-20965615
OBJECTIVE: To evaluate the predictive efficiency of two statistical models (one parametric and the other non-parametric) to predict critical episodes of air pollution exceeding daily air quality standards in Santiago, Chile by using the next day PM10 maximum 24h value. Accurate prediction of such episodes would allow restrictive measures to be applied by health authorities to reduce their seriousness and protect the community's health. METHODS: We used the PM10 concentrations registered by a station of the Air Quality Monitoring Network (152 daily observations of 14 variables) and meteorological information gathered from 2001 to 2004. To construct predictive models, we fitted a parametric Gamma model using STATA v11 software and a non-parametric MARS model by using a demo version of Salford-Systems. RESULTS: Both models showed a high correlation between observed and predicted values. However, the Gamma model predicted PM10 values below 240 µg/m³ more accurately than did MARS. The latter was more efficient in predicting PM10 values above 240 µg/m³ throughout the study period. CONCLUSION: MARS models are more efficient in predicting extreme PM10 values and allow health authorities to adopt preventive methods to reduce the effects of these levels on the population's health. The reason for this greater accuracy may be that MARS models correct variations in the series over time, thus better fitting the curve associated with PM10 concentrations.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Poluição do Ar / Exposição Ambiental Tipo de estudo: Prognostic_studies / Risk_factors_studies País/Região como assunto: America do sul / Chile Idioma: Es Revista: Gac Sanit Assunto da revista: SAUDE PUBLICA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Chile País de publicação: Espanha

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Modelos Estatísticos / Poluição do Ar / Exposição Ambiental Tipo de estudo: Prognostic_studies / Risk_factors_studies País/Região como assunto: America do sul / Chile Idioma: Es Revista: Gac Sanit Assunto da revista: SAUDE PUBLICA Ano de publicação: 2010 Tipo de documento: Article País de afiliação: Chile País de publicação: Espanha