Your browser doesn't support javascript.
loading
Infrared species tomography of a transient flow field using Kalman filtering.
Daun, Kyle J; Waslander, Steven L; Tulloch, Brandon B.
Afiliação
  • Daun KJ; Department of Mechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada. kjdaun@uwaterloo.ca
Appl Opt ; 50(6): 891-900, 2011 Feb 20.
Article em En | MEDLINE | ID: mdl-21343969
In infrared species tomography, the unknown concentration distribution of a species is inferred from the attenuation of multiple collimated light beams shone through the measurement field. The resulting set of linear equations is rank-deficient, so prior assumptions about the smoothness and nonnegativity of the distribution must be imposed to recover a solution. This paper describes how the Kalman filter can be used to incorporate additional information about the time evolution of the distribution into the reconstruction. Results show that, although performing a series of static reconstructions is more accurate at low levels of measurement noise, the Kalman filter becomes advantageous when the measurements are corrupted with high levels of noise. The Kalman filter also enables signal multiplexing, which can help achieve the high sampling rates needed to resolve turbulent flow phenomena.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Appl Opt Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Canadá País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Appl Opt Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Canadá País de publicação: Estados Unidos