Your browser doesn't support javascript.
loading
Transgenic overexpression of γ-cytoplasmic actin protects against eccentric contraction-induced force loss in mdx mice.
Baltgalvis, Kristen A; Jaeger, Michele A; Fitzsimons, Daniel P; Thayer, Stanley A; Lowe, Dawn A; Ervasti, James M.
Afiliação
  • Baltgalvis KA; Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 6-155 Jackson Hall, 321 Church Street SE, Minneapolis, MN 55455, USA. jervasti@umn.edu.
Skelet Muscle ; 1(1): 32, 2011 Oct 13.
Article em En | MEDLINE | ID: mdl-21995957
BACKGROUND: γ-cytoplasmic (γ-cyto) actin levels are elevated in dystrophin-deficient mdx mouse skeletal muscle. The purpose of this study was to determine whether further elevation of γ-cyto actin levels improve or exacerbate the dystrophic phenotype of mdx mice. METHODS: We transgenically overexpressed γ-cyto actin, specifically in skeletal muscle of mdx mice (mdx-TG), and compared skeletal muscle pathology and force-generating capacity between mdx and mdx-TG mice at different ages. We investigated the mechanism by which γ-cyto actin provides protection from force loss by studying the role of calcium channels and stretch-activated channels in isolated skeletal muscles and muscle fibers. Analysis of variance or independent t-tests were used to detect statistical differences between groups. RESULTS: Levels of γ-cyto actin in mdx-TG skeletal muscle were elevated 200-fold compared to mdx skeletal muscle and incorporated into thin filaments. Overexpression of γ-cyto actin had little effect on most parameters of mdx muscle pathology. However, γ-cyto actin provided statistically significant protection against force loss during eccentric contractions. Store-operated calcium entry across the sarcolemma did not differ between mdx fibers compared to wild-type fibers. Additionally, the omission of extracellular calcium or the addition of streptomycin to block stretch-activated channels did not improve the force-generating capacity of isolated extensor digitorum longus muscles from mdx mice during eccentric contractions. CONCLUSIONS: The data presented in this study indicate that upregulation of γ-cyto actin in dystrophic skeletal muscle can attenuate force loss during eccentric contractions and that the mechanism is independent of activation of stretch-activated channels and the accumulation of extracellular calcium.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Skelet Muscle Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Skelet Muscle Ano de publicação: 2011 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido