Your browser doesn't support javascript.
loading
Human health risk assessment of CO2 leakage into overlying aquifers using a stochastic, geochemical reactive transport approach.
Atchley, Adam L; Maxwell, Reed M; Navarre-Sitchler, Alexis K.
Afiliação
  • Atchley AL; Hydrological Science & Engineering Program, Department of Geology & Geological Engineering, Colorado School of Mines, 1500 Illinois St, Golden, Colorado 80401, United States.
Environ Sci Technol ; 47(11): 5954-62, 2013 Jun 04.
Article em En | MEDLINE | ID: mdl-23618095
Increased human health risk associated with groundwater contamination from potential carbon dioxide (CO2) leakage into a potable aquifer is predicted by conducting a joint uncertainty and variability (JUV) risk assessment. The approach presented here explicitly incorporates heterogeneous flow and geochemical reactive transport in an efficient manner and is used to evaluate how differences in representation of subsurface physical heterogeneity and geochemical reactions change the calculated risk for the same hypothetical aquifer scenario where a CO2 leak induces increased lead (Pb(2+)) concentrations through dissolution of galena (PbS). A nested Monte Carlo approach was used to take Pb(2+) concentrations at a well from an ensemble of numerical reactive transport simulations (uncertainty) and sample within a population of potentially exposed individuals (variability) to calculate risk as a function of both uncertainty and variability. Pb(2+) concentrations at the well were determined with numerical reactive transport simulation ensembles using a streamline technique in a heterogeneous 3D aquifer. Three ensembles with variances of log hydraulic conductivity (σ(2)lnK) of 1, 3.61, and 16 were simulated. Under the conditions simulated, calculated risk is shown to be a function of the strength of subsurface heterogeneity, σ(2)lnK and the choice between calculating Pb(2+) concentrations in groundwater using equilibrium with galena and kinetic mineral reaction rates. Calculated risk increased with an increase in σ(2)lnK of 1 to 3.61, but decreased when σ(2)lnK was increased from 3.61 to 16 for all but the highest percentiles of uncertainty. Using a Pb(2+) concentration in equilibrium with galena under CO2 leakage conditions (PCO2 = 30 bar) resulted in lower estimated risk than the simulations where Pb(2+) concentrations were calculated using kinetic mass transfer reaction rates for galena dissolution and precipitation. This study highlights the importance of understanding both hydrologic and geochemical conditions when numerical simulations are used to perform quantitative risk calculations.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluição da Água / Água Subterrânea / Dióxido de Carbono / Medição de Risco Tipo de estudo: Etiology_studies / Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Environ Sci Technol Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluição da Água / Água Subterrânea / Dióxido de Carbono / Medição de Risco Tipo de estudo: Etiology_studies / Health_economic_evaluation / Prognostic_studies / Risk_factors_studies Limite: Humans Idioma: En Revista: Environ Sci Technol Ano de publicação: 2013 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos