Exhaustive proteome mining for functional MHC-I ligands.
ACS Chem Biol
; 8(9): 1876-81, 2013 Sep 20.
Article
em En
| MEDLINE
| ID: mdl-23772559
We present the development and application of a new machine-learning approach to exhaustively and reliably identify major histocompatibility complex class I (MHC-I) ligands among all 20(8) octapeptides and in genome-derived proteomes of Mus musculus , influenza A H3N8, and vesicular stomatitis virus (VSV). Focusing on murine H-2K(b), we identified potent octapeptides exhibiting direct MHC-I binding and stabilization on the surface of TAP-deficient RMA-S cells. Computationally identified VSV-derived peptides induced CD8(+) T-cell proliferation after VSV-infection of mice. The study demonstrates that high-level machine-learning models provide a unique access to rationally designed peptides and a promising approach toward "reverse vaccinology".
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Oligopeptídeos
/
Genes MHC Classe I
/
Antígenos H-2
/
Vesiculovirus
/
Proteoma
/
Vírus da Influenza A Subtipo H3N8
Limite:
Animals
Idioma:
En
Revista:
ACS Chem Biol
Ano de publicação:
2013
Tipo de documento:
Article
País de afiliação:
Suíça
País de publicação:
Estados Unidos