Your browser doesn't support javascript.
loading
Correcting and combining time series forecasters.
Firmino, Paulo Renato A; de Mattos Neto, Paulo S G; Ferreira, Tiago A E.
Afiliação
  • Firmino PR; Department of Statistics and Informatics, Federal Rural University of Pernambuco, 52171-900, Recife, Pernambuco, Brazil.
  • de Mattos Neto PS; Department of Computing, University of Pernambuco, Garanhuns, Pernambuco, Brazil.
  • Ferreira TA; Department of Statistics and Informatics, Federal Rural University of Pernambuco, 52171-900, Recife, Pernambuco, Brazil. Electronic address: taef.first@gmail.com.
Neural Netw ; 50: 1-11, 2014 Feb.
Article em En | MEDLINE | ID: mdl-24239986
Combined forecasters have been in the vanguard of stochastic time series modeling. In this way it has been usual to suppose that each single model generates a residual or prediction error like a white noise. However, mostly because of disturbances not captured by each model, it is yet possible that such supposition is violated. The present paper introduces a two-step method for correcting and combining forecasting models. Firstly, the stochastic process underlying the bias of each predictive model is built according to a recursive ARIMA algorithm in order to achieve a white noise behavior. At each iteration of the algorithm the best ARIMA adjustment is determined according to a given information criterion (e.g. Akaike). Then, in the light of the corrected predictions, it is considered a maximum likelihood combined estimator. Applications involving single ARIMA and artificial neural networks models for Dow Jones Industrial Average Index, S&P500 Index, Google Stock Value, and Nasdaq Index series illustrate the usefulness of the proposed framework.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processos Estocásticos / Redes Neurais de Computação / Previsões Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neural Netw Assunto da revista: NEUROLOGIA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Processos Estocásticos / Redes Neurais de Computação / Previsões Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Neural Netw Assunto da revista: NEUROLOGIA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos