Your browser doesn't support javascript.
loading
N-gram support vector machines for scalable procedure and diagnosis classification, with applications to clinical free text data from the intensive care unit.
Marafino, Ben J; Davies, Jason M; Bardach, Naomi S; Dean, Mitzi L; Dudley, R Adams.
Afiliação
  • Marafino BJ; Philip R. Lee Institute for Health Policy Studies, School of Medicine, University of California, San Francisco, California, USA.
  • Davies JM; Philip R. Lee Institute for Health Policy Studies, School of Medicine, University of California, San Francisco, California, USA Department of Neurosurgery, University of California, San Francisco, California, USA.
  • Bardach NS; Philip R. Lee Institute for Health Policy Studies, School of Medicine, University of California, San Francisco, California, USA Department of Pediatrics, University of California, San Francisco, California, USA.
  • Dean ML; Philip R. Lee Institute for Health Policy Studies, School of Medicine, University of California, San Francisco, California, USA.
  • Dudley RA; Philip R. Lee Institute for Health Policy Studies, School of Medicine, University of California, San Francisco, California, USA Center for Healthcare Value, University of California, San Francisco, California, USA Department of Epidemiology and Biostatistics, University of California, San Francisco,
J Am Med Inform Assoc ; 21(5): 871-5, 2014.
Article em En | MEDLINE | ID: mdl-24786209
BACKGROUND: Existing risk adjustment models for intensive care unit (ICU) outcomes rely on manual abstraction of patient-level predictors from medical charts. Developing an automated method for abstracting these data from free text might reduce cost and data collection times. OBJECTIVE: To develop a support vector machine (SVM) classifier capable of identifying a range of procedures and diagnoses in ICU clinical notes for use in risk adjustment. MATERIALS AND METHODS: We selected notes from 2001-2008 for 4191 neonatal ICU (NICU) and 2198 adult ICU patients from the MIMIC-II database from the Beth Israel Deaconess Medical Center. Using these notes, we developed an implementation of the SVM classifier to identify procedures (mechanical ventilation and phototherapy in NICU notes) and diagnoses (jaundice in NICU and intracranial hemorrhage (ICH) in adult ICU). On the jaundice classification task, we also compared classifier performance using n-gram features to unigrams with application of a negation algorithm (NegEx). RESULTS: Our classifier accurately identified mechanical ventilation (accuracy=0.982, F1=0.954) and phototherapy use (accuracy=0.940, F1=0.912), as well as jaundice (accuracy=0.898, F1=0.884) and ICH diagnoses (accuracy=0.938, F1=0.943). Including bigram features improved performance on the jaundice (accuracy=0.898 vs 0.865) and ICH (0.938 vs 0.927) tasks, and outperformed NegEx-derived unigram features (accuracy=0.898 vs 0.863) on the jaundice task. DISCUSSION: Overall, a classifier using n-gram support vectors displayed excellent performance characteristics. The classifier generalizes to diverse patient populations, diagnoses, and procedures. CONCLUSIONS: SVM-based classifiers can accurately identify procedure status and diagnoses among ICU patients, and including n-gram features improves performance, compared to existing methods.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Armazenamento e Recuperação da Informação / Classificação / Registros Eletrônicos de Saúde / Máquina de Vetores de Suporte Tipo de estudo: Diagnostic_studies / Guideline / Prognostic_studies Limite: Adult / Humans / Newborn Idioma: En Revista: J Am Med Inform Assoc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Armazenamento e Recuperação da Informação / Classificação / Registros Eletrônicos de Saúde / Máquina de Vetores de Suporte Tipo de estudo: Diagnostic_studies / Guideline / Prognostic_studies Limite: Adult / Humans / Newborn Idioma: En Revista: J Am Med Inform Assoc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2014 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Reino Unido