Your browser doesn't support javascript.
loading
Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells.
Leamy, Alexandra K; Egnatchik, Robert A; Shiota, Masakazu; Ivanova, Pavlina T; Myers, David S; Brown, H Alex; Young, Jamey D.
Afiliação
  • Leamy AK; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604.
  • Egnatchik RA; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604.
  • Shiota M; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235-1604.
  • Ivanova PT; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235-1604.
  • Myers DS; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235-1604.
  • Brown HA; Department of Pharmacology, Vanderbilt University Medical Center, Vanderbilt University, Nashville, TN 37235-1604 Department of Biochemistry, Vanderbilt University, Nashville, TN 37235-1604 Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN 37235-1604.
  • Young JD; Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235-1604 Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37235-1604.
J Lipid Res ; 55(7): 1478-88, 2014 07.
Article em En | MEDLINE | ID: mdl-24859739
High levels of saturated FAs (SFAs) are acutely toxic to a variety of cell types, including hepatocytes, and have been associated with diseases such as type 2 diabetes and nonalcoholic fatty liver disease. SFA accumulation has been previously shown to degrade endoplasmic reticulum (ER) function leading to other manifestations of the lipoapoptotic cascade. We hypothesized that dysfunctional phospholipid (PL) metabolism is an initiating factor in this ER stress response. Treatment of either primary hepatocytes or H4IIEC3 cells with the SFA palmitate resulted in dramatic dilation of the ER membrane, coinciding with other markers of organelle dysfunction. This was accompanied by increased de novo glycerolipid synthesis, significant elevation of dipalmitoyl phosphatidic acid, diacylglycerol, and total PL content in H4IIEC3 cells. Supplementation with oleate (OA) reversed these markers of palmitate (PA)-induced lipotoxicity. OA/PA cotreatment modulated the distribution of PA between lipid classes, increasing the flux toward triacylglycerols while reducing its incorporation into PLs. Similar trends were demonstrated in both primary hepatocytes and the H4IIEC3 hepatoma cell line. Overall, these findings suggest that modifying the FA composition of structural PLs can protect hepatocytes from PA-induced ER stress and associated lipotoxicity.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfolipídeos / Ácido Palmítico / Hepatócitos / Estresse do Retículo Endoplasmático / Fígado Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Revista: J Lipid Res Ano de publicação: 2014 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fosfolipídeos / Ácido Palmítico / Hepatócitos / Estresse do Retículo Endoplasmático / Fígado Tipo de estudo: Risk_factors_studies Limite: Animals Idioma: En Revista: J Lipid Res Ano de publicação: 2014 Tipo de documento: Article País de publicação: Estados Unidos