Your browser doesn't support javascript.
loading
Some perspectives on network modeling in therapeutic target prediction.
Albert, Reka; DasGupta, Bhaskar; Mobasheri, Nasim.
Afiliação
  • Albert R; Department of Physics, Pennsylvania State University, University Park, PA.
  • DasGupta B; Department of Computer Science, University of Illinois at Chicago, Chicago, IL.
  • Mobasheri N; Department of Computer Science, University of Illinois at Chicago, Chicago, IL.
Biomed Eng Comput Biol ; 5: 17-24, 2013.
Article em En | MEDLINE | ID: mdl-25288898
Drug target identification is of significant commercial interest to pharmaceutical companies, and there is a vast amount of research done related to the topic of therapeutic target identification. Interdisciplinary research in this area involves both the biological network community and the graph algorithms community. Key steps of a typical therapeutic target identification problem include synthesizing or inferring the complex network of interactions relevant to the disease, connecting this network to the disease-specific behavior, and predicting which components are key mediators of the behavior. All of these steps involve graph theoretical or graph algorithmic aspects. In this perspective, we provide modelling and algorithmic perspectives for therapeutic target identification and highlight a number of algorithmic advances, which have gotten relatively little attention so far, with the hope of strengthening the ties between these two research communities.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Biomed Eng Comput Biol Ano de publicação: 2013 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Biomed Eng Comput Biol Ano de publicação: 2013 Tipo de documento: Article País de publicação: Estados Unidos