Reynolds number dependency of an insect-based flapping wing.
Bioinspir Biomim
; 9(4): 046012, 2014.
Article
em En
| MEDLINE
| ID: mdl-25381677
Aerodynamic characteristics depending on Reynolds number (Re) ranges were studied to investigate the suitable design parameters of an insect-based micro air vehicle (MAV). The tests centered on the wing rotation timing and Re ranges, and were conducted to understand the lift augmentations and unsteady effects. A dynamically scaled-up flapping wing controlled by a pair of servos was installed underwater with a micro force/torque sensor. A high-speed camera and a laser sheet were also put in front of the water tank for the time-resolved digital particle image velocimetry (DPIV). The lift augmentations clearly appeared at low Re and were well reflected on the insect's flight range. In the case of the high Re, however, the peak standing for the wingwake interaction was delayed, and the pitching-up rotation was not able to lead to another lift enhancement, i.e., rotational lift. In such Re, the mean CL and the L/D of the advanced rotation were substantially decreased from those of the other rotations. The DPIV results at high Re well described turbulent characteristics such as the irregular, unstable, and high-intensity vortex structures with a short temporal delay. In the advanced rotation, the LEV in the rotational phase could not maintain the attachment. Thus, the rotational lift was not able to work. On the contrary, the temporal response delay benefitted the wing in the delayed rotation. Therefore, the wing in the delayed rotation had both a similar level of the mean CL and a higher marked L/D than those of the advanced rotation. Such results indicate that the high Re could interrupt lift augmentation mechanisms, and these augmentations would not be suitable for a heavier MAV. In conclusion, using adequate wing kinematics to acquire estimations of the weight and range of the Re is highly recommended at the aerodynamic design step.
Buscar no Google
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Reologia
/
Asas de Animais
/
Aeronaves
/
Biomimética
/
Voo Animal
/
Insetos
/
Modelos Biológicos
Tipo de estudo:
Prognostic_studies
Limite:
Animals
Idioma:
En
Revista:
Bioinspir Biomim
Assunto da revista:
BIOLOGIA
/
ENGENHARIA BIOMEDICA
Ano de publicação:
2014
Tipo de documento:
Article
País de publicação:
Reino Unido