Your browser doesn't support javascript.
loading
Determination of detergent and dispensant additives in gasoline by ring-oven and near infrared hypespectral imaging.
Rodrigues e Brito, Lívia; da Silva, Michelle P F; Rohwedder, Jarbas J R; Pasquini, Celio; Honorato, Fernanda A; Pimentel, Maria Fernanda.
Afiliação
  • Rodrigues e Brito L; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
  • da Silva MP; Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
  • Rohwedder JJ; Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
  • Pasquini C; Instituto de Química, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil.
  • Honorato FA; Departamento de Engenharia Química, Universidade Federal de Pernambuco - UFPE, Avenida Prof. Arthur de Sá s/n, Cidade Universitária, 50740-521 Recife, PE, Brazil.
  • Pimentel MF; Departamento de Engenharia Química, Universidade Federal de Pernambuco - UFPE, Avenida Prof. Arthur de Sá s/n, Cidade Universitária, 50740-521 Recife, PE, Brazil. Electronic address: mfernanda.pimentel@ufpe.br.
Anal Chim Acta ; 863: 9-19, 2015 Mar 10.
Article em En | MEDLINE | ID: mdl-25732308
A method using the ring-oven technique for pre-concentration in filter paper discs and near infrared hyperspectral imaging is proposed to identify four detergent and dispersant additives, and to determine their concentration in gasoline. Different approaches were used to select the best image data processing in order to gather the relevant spectral information. This was attained by selecting the pixels of the region of interest (ROI), using a pre-calculated threshold value of the PCA scores arranged as histograms, to select the spectra set; summing up the selected spectra to achieve representativeness; and compensating for the superimposed filter paper spectral information, also supported by scores histograms for each individual sample. The best classification model was achieved using linear discriminant analysis and genetic algorithm (LDA/GA), whose correct classification rate in the external validation set was 92%. Previous classification of the type of additive present in the gasoline is necessary to define the PLS model required for its quantitative determination. Considering that two of the additives studied present high spectral similarity, a PLS regression model was constructed to predict their content in gasoline, while two additional models were used for the remaining additives. The results for the external validation of these regression models showed a mean percentage error of prediction varying from 5 to 15%.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Anal Chim Acta Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Anal Chim Acta Ano de publicação: 2015 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda