Your browser doesn't support javascript.
loading
The Presynaptic Microtubule Cytoskeleton in Physiological and Pathological Conditions: Lessons from Drosophila Fragile X Syndrome and Hereditary Spastic Paraplegias.
Bodaleo, Felipe J; Gonzalez-Billault, Christian.
Afiliação
  • Bodaleo FJ; Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile.
  • Gonzalez-Billault C; Laboratory of Cell and Neuronal Dynamics, Department of Biology, Faculty of Sciences, Universidad de ChileSantiago, Chile; Center for Geroscience, Brain Health and Metabolism (GERO)Santiago, Chile; The Buck Institute for Research on Aging, NovatoCA, USA.
Front Mol Neurosci ; 9: 60, 2016.
Article em En | MEDLINE | ID: mdl-27504085
The capacity of the nervous system to generate neuronal networks relies on the establishment and maintenance of synaptic contacts. Synapses are composed of functionally different presynaptic and postsynaptic compartments. An appropriate synaptic architecture is required to provide the structural basis that supports synaptic transmission, a process involving changes in cytoskeletal dynamics. Actin microfilaments are the main cytoskeletal components present at both presynaptic and postsynaptic terminals in glutamatergic synapses. However, in the last few years it has been demonstrated that microtubules (MTs) transiently invade dendritic spines, promoting their maturation. Nevertheless, the presence and functions of MTs at the presynaptic site are still a matter of debate. Early electron microscopy (EM) studies revealed that MTs are present in the presynaptic terminals of the central nervous system (CNS) where they interact with synaptic vesicles (SVs) and reach the active zone. These observations have been reproduced by several EM protocols; however, there is empirical heterogeneity in detecting presynaptic MTs, since they appear to be both labile and unstable. Moreover, increasing evidence derived from studies in the fruit fly neuromuscular junction proposes different roles for MTs in regulating presynaptic function in physiological and pathological conditions. In this review, we summarize the main findings that support the presence and roles of MTs at presynaptic terminals, integrating descriptive and biochemical analyses, and studies performed in invertebrate genetic models.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Mol Neurosci Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Chile País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Front Mol Neurosci Ano de publicação: 2016 Tipo de documento: Article País de afiliação: Chile País de publicação: Suíça