Your browser doesn't support javascript.
loading
Prediction of phosphorylation sites based on the integration of multiple classifiers.
Han, R Z; Wang, D; Chen, Y H; Dong, L K; Fan, Y L.
Afiliação
  • Han RZ; School of Information Science and Engineering, University of Jinan, Jinan, Shandong, China.
  • Wang D; Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan, Shandong, China.
  • Chen YH; School of Information Science and Engineering, University of Jinan, Jinan, Shandong, China ise_wangd@ujn.edu.cn.
  • Dong LK; Shandong Provincial Key Laboratory of Network Based Intelligent Computing, Jinan, Shandong, China ise_wangd@ujn.edu.cn.
  • Fan YL; School of Information Science and Engineering, University of Jinan, Jinan, Shandong, China ise_wangd@ujn.edu.cn.
Genet Mol Res ; 16(1)2017 Feb 23.
Article em En | MEDLINE | ID: mdl-28252167
Phosphorylation is an important part of post-translational modifications of proteins, and is essential for many biological activities. Phosphorylation and dephosphorylation can regulate signal transduction, gene expression, and cell cycle regulation in many cellular processes. Phosphorylation is extremely important for both basic research and drug discovery to rapidly and correctly identify the attributes of a new protein phosphorylation sites. Moreover, abnormal phosphorylation can be used as a key medical feature related to a disease in some cases. The using of computational methods could improve the accuracy of detection of phosphorylation sites, which can provide predictive guidance for the prevention of the occurrence and/or the best course of treatment for certain diseases. Furthermore, this approach can effectively reduce the costs of biological experiments. In this study, a flexible neural tree (FNT), particle swarm optimization, and support vector machine algorithms were used to classify data with secondary encoding according to the physical and chemical properties of amino acids for feature extraction. Comparison of the classification results obtained from the three classifiers showed that the classification of the FNT was the best. The three classifiers were then integrated in the form of a minority subordinate to the majority vote to obtain the results. The performance of the integrated model showed improvement in sensitivity (87.41%), specificity (87.60%), and accuracy (87.50%).
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Proteínas / Biologia Computacional / Modelos Teóricos Tipo de estudo: Guideline / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Genet Mol Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China País de publicação: Brasil

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Proteínas / Biologia Computacional / Modelos Teóricos Tipo de estudo: Guideline / Prognostic_studies / Risk_factors_studies Limite: Animals / Humans Idioma: En Revista: Genet Mol Res Assunto da revista: BIOLOGIA MOLECULAR / GENETICA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: China País de publicação: Brasil