Your browser doesn't support javascript.
loading
Intervention to maximise the probability of epidemic fade-out.
Ballard, P G; Bean, N G; Ross, J V.
Afiliação
  • Ballard PG; The University of Adelaide, School of Mathematical Sciences and ARC Centre of Excellence for Mathematical and Statistical Frontiers, Adelaide SA 5005, Australia. Electronic address: peter.ballard@adelaide.edu.au.
  • Bean NG; The University of Adelaide, School of Mathematical Sciences and ARC Centre of Excellence for Mathematical and Statistical Frontiers, Adelaide SA 5005, Australia. Electronic address: nigel.bean@adelaide.edu.au.
  • Ross JV; The University of Adelaide, School of Mathematical Sciences and ARC Centre of Excellence for Mathematical and Statistical Frontiers, Adelaide SA 5005, Australia. Electronic address: joshua.ross@adelaide.edu.au.
Math Biosci ; 293: 1-10, 2017 11.
Article em En | MEDLINE | ID: mdl-28804021
The emergence of a new strain of a disease, or the introduction of an existing strain to a naive population, can give rise to an epidemic. We consider how to maximise the probability of epidemic fade-out - that is, disease elimination in the trough between the first and second waves of infection - in the Markovian SIR-with-demography epidemic model. We assume we have an intervention at our disposal that results in a lowering of the transmission rate parameter, ß, and that an epidemic has commenced. We determine the optimal stage during the epidemic in which to implement this intervention. This may be determined using Markov decision theory, but this is not always practical, in particular if the population size is large. Hence, we also derive a formula that gives an almost optimal solution, based upon the approximate deterministic behaviour of the model. This formula is explicit, simple, and, perhaps surprisingly, independent of ß and the effectiveness of the intervention. We demonstrate that this policy can give a substantial increase in the probability of epidemic fade-out, and we also show that it is relatively robust to a less than ideal implementation.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teoria da Decisão / Doenças Transmissíveis / Cadeias de Markov / Epidemias Tipo de estudo: Health_economic_evaluation / Prognostic_studies Limite: Humans Idioma: En Revista: Math Biosci Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teoria da Decisão / Doenças Transmissíveis / Cadeias de Markov / Epidemias Tipo de estudo: Health_economic_evaluation / Prognostic_studies Limite: Humans Idioma: En Revista: Math Biosci Ano de publicação: 2017 Tipo de documento: Article País de publicação: Estados Unidos