Your browser doesn't support javascript.
loading
Experimental phase synchronization detection in non-phase coherent chaotic systems by using the discrete complex wavelet approach.
Ferreira, Maria Teodora; Follmann, Rosangela; Domingues, Margarete O; Macau, Elbert E N; Kiss, István Z.
Afiliação
  • Ferreira MT; Associated Laboratory for Computing and Applied Mathematics (LAC), Brazilian National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil.
  • Follmann R; Associated Laboratory for Computing and Applied Mathematics (LAC), Brazilian National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil.
  • Domingues MO; Associated Laboratory for Computing and Applied Mathematics (LAC), Brazilian National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil.
  • Macau EEN; Associated Laboratory for Computing and Applied Mathematics (LAC), Brazilian National Institute for Space Research (INPE), São José dos Campos 12227-010, Brazil.
  • Kiss IZ; Department of Chemistry, Saint Louis University, St. Louis, Missouri 63103, USA.
Chaos ; 27(8): 083122, 2017 Aug.
Article em En | MEDLINE | ID: mdl-28863491
Phase synchronization may emerge from mutually interacting non-linear oscillators, even under weak coupling, when phase differences are bounded, while amplitudes remain uncorrelated. However, the detection of this phenomenon can be a challenging problem to tackle. In this work, we apply the Discrete Complex Wavelet Approach (DCWA) for phase assignment, considering signals from coupled chaotic systems and experimental data. The DCWA is based on the Dual-Tree Complex Wavelet Transform (DT-CWT), which is a discrete transformation. Due to its multi-scale properties in the context of phase characterization, it is possible to obtain very good results from scalar time series, even with non-phase-coherent chaotic systems without state space reconstruction or pre-processing. The method correctly predicts the phase synchronization for a chemical experiment with three locally coupled, non-phase-coherent chaotic processes. The impact of different time-scales is demonstrated on the synchronization process that outlines the advantages of DCWA for analysis of experimental data.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Chaos Assunto da revista: CIENCIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Diagnostic_studies Idioma: En Revista: Chaos Assunto da revista: CIENCIA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos