Your browser doesn't support javascript.
loading
Statistical modelling for precision agriculture: A case study in optimal environmental schedules for Agaricus Bisporus production via variable domain functional regression.
Panayi, Efstathios; Peters, Gareth W; Kyriakides, George.
Afiliação
  • Panayi E; Department of Statistical Sciences, University College London, London, United Kingdom.
  • Peters GW; Department of Statistical Sciences, University College London, London, United Kingdom.
  • Kyriakides G; Department of Statistical Sciences, University College London, London, United Kingdom.
PLoS One ; 12(9): e0181921, 2017.
Article em En | MEDLINE | ID: mdl-28961254
Quantifying the effects of environmental factors over the duration of the growing process on Agaricus Bisporus (button mushroom) yields has been difficult, as common functional data analysis approaches require fixed length functional data. The data available from commercial growers, however, is of variable duration, due to commercial considerations. We employ a recently proposed regression technique termed Variable-Domain Functional Regression in order to be able to accommodate these irregular-length datasets. In this way, we are able to quantify the contribution of covariates such as temperature, humidity and water spraying volumes across the growing process, and for different lengths of growing processes. Our results indicate that optimal oxygen and temperature levels vary across the growing cycle and we propose environmental schedules for these covariates to optimise overall yields.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Agaricus / Modelos Estatísticos / Produtos Agrícolas Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Reino Unido País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Agaricus / Modelos Estatísticos / Produtos Agrícolas Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2017 Tipo de documento: Article País de afiliação: Reino Unido País de publicação: Estados Unidos