Increased lipid and protein oxidation and lowered anti-oxidant defenses in systemic lupus erythematosus are associated with severity of illness, autoimmunity, increased adhesion molecules, and Th1 and Th17 immune shift.
Immunol Res
; 66(1): 158-171, 2018 02.
Article
em En
| MEDLINE
| ID: mdl-29185130
This study investigated nitro-oxidative stress in patients with systemic lupus erythematosus (SLE) in association with disease activity, immune-inflammatory biomarkers, and adhesion molecules. Two-hundred-four patients with SLE and 256 healthy volunteers were enrolled in this case-control study, which measured nitro-oxidative stress biomarkers, including lipid peroxides (LOOH), advanced oxidation protein products (AOPPs), nitric oxide metabolites (NOx), sulfhydryl (-SH) groups, products of deoxyribonucleic acid (DNA)/ribonucleic acid (RNA) oxidative degradation, and total radical-trapping anti-oxidant parameter (TRAP). Also measured were anti-nuclear antibodies (ANAs), antibodies against double-stranded DNA (dsDNA), plasma levels of diverse cytokines, C-reactive protein, and adhesion molecules. LOOH (p < 0.001) and AOPP (p < 0.001) were significantly higher, while TRAP was significantly lower (p < 0.001) in SLE patients than in controls. AOPP and LOOH were significantly and positively associated with SLE disease activity index (SLEDAI) scores, anti-nuclear antibodies, and antibodies against double-stranded DNA (anti-dsDNA) levels, while TRAP was significantly and inversely correlated with SLEDAI, ANA, and dsDNA antibody levels. There were significant positive associations between AOPP and LOOH and immune-inflammatory markers, indicating T helper (Th)-17 and Th1 bias and Th1 + Th17/Th2 ratio (p = 0.002 and p = 0.001, respectively). AOPP and LOOH (positively) and TRAP (inversely) were associated with adhesion molecule expression. A model predicting SLE was computed showing that, using LOOH, AOPP, NOx, adhesion molecules, and body mass index, 94.2% of the patients were correctly classified with a specificity of 91.5%. Increased nitro-oxidative stress takes part in the (auto)immune pathophysiology of SLE and modulates severity of illness and adhesion molecule expression.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Biomarcadores
/
Células Th1
/
Células Th17
/
Inflamação
/
Lúpus Eritematoso Sistêmico
Tipo de estudo:
Observational_studies
/
Prognostic_studies
/
Risk_factors_studies
Limite:
Adult
/
Female
/
Humans
/
Male
/
Middle aged
Idioma:
En
Revista:
Immunol Res
Assunto da revista:
ALERGIA E IMUNOLOGIA
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Estados Unidos