One-step prepared cobalt-based nanosheet as an efficient heterogeneous catalyst for activating peroxymonosulfate to degrade caffeine in water.
J Colloid Interface Sci
; 514: 272-280, 2018 Mar 15.
Article
em En
| MEDLINE
| ID: mdl-29274558
Two-dimensional (2D) planar cobalt-containing materials are promising catalysts for activating peroxymonosulfate (PMS) to degrade contaminants because 2D sheet-like morphology provides large reactive surfaces. However, preparation of these sheet-supported cobaltic materials typically involves multiple steps and complex reagents, making them less practical for PMS activation. In this study, a cobalt-based nanosheet (CoNS) is particularly developed using a one-step hydrothermal process with a single reagent in water. The resulting CoNS can exhibit a thickness as thin as a few nanometers and 2-D morphology. CoNS is also primarily comprised of cobalt species in a coordinated form of Prussian Blue analogue, which consists of both Co3+ and Co2+. These features make CoNS promising for activating PMS in aqueous systems. As degradation of an emerging contaminant, caffeine, is selected as a representative reaction, CoNS not only successfully activates PMS to fully degrade caffeine in 20â¯min but also exhibits a much higher catalytic activity than the most common PMS activator, Co3O4. Via studying inhibitive effects of radical scavengers, caffeine degradation by CoNS-activated PMS is primarily attributed to sulfate radicals and hydroxyl radicals to a lesser extent. The degradation products of caffeine by CoNS-activated PMS are also identified and a potential degradation pathway is proposed. Moreover, CoNS could be also re-used to activate PMS for caffeine degradation without activity loss. These results indicate that CoNS is a conveniently prepared and highly effective and stable 2-D catalyst for aqueous chemical oxidation reactions.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Colloid Interface Sci
Ano de publicação:
2018
Tipo de documento:
Article
País de publicação:
Estados Unidos