Your browser doesn't support javascript.
loading
EEG Waveform Analysis of P300 ERP with Applications to Brain Computer Interfaces.
Ramele, Rodrigo; Villar, Ana Julia; Santos, Juan Miguel.
Afiliação
  • Ramele R; Computer Engineering Department, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires 1441, Argentina. rramele@itba.edu.ar.
  • Villar AJ; Computer Engineering Department, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires 1441, Argentina. jvillar@itba.edu.ar.
  • Santos JM; Computer Engineering Department, Instituto Tecnológico de Buenos Aires (ITBA), Buenos Aires 1441, Argentina. jsantos@itba.edu.ar.
Brain Sci ; 8(11)2018 Nov 16.
Article em En | MEDLINE | ID: mdl-30453482
The Electroencephalography (EEG) is not just a mere clinical tool anymore. It has become the de-facto mobile, portable, non-invasive brain imaging sensor to harness brain information in real time. It is now being used to translate or decode brain signals, to diagnose diseases or to implement Brain Computer Interface (BCI) devices. The automatic decoding is mainly implemented by using quantitative algorithms to detect the cloaked information buried in the signal. However, clinical EEG is based intensively on waveforms and the structure of signal plots. Hence, the purpose of this work is to establish a bridge to fill this gap by reviewing and describing the procedures that have been used to detect patterns in the electroencephalographic waveforms, benchmarking them on a controlled pseudo-real dataset of a P300-Based BCI Speller and verifying their performance on a public dataset of a BCI Competition.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Brain Sci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Argentina País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Brain Sci Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Argentina País de publicação: Suíça