Your browser doesn't support javascript.
loading
Phonocardiogram classification using deep neural networks and weighted probability comparisons.
Sotaquirá, Miguel; Alvear, Demián; Mondragón, Misael.
Afiliação
  • Sotaquirá M; a Universidad de San Buenaventura , Bogotá , Colombia.
  • Alvear D; a Universidad de San Buenaventura , Bogotá , Colombia.
  • Mondragón M; a Universidad de San Buenaventura , Bogotá , Colombia.
J Med Eng Technol ; 42(7): 510-517, 2018 Oct.
Article em En | MEDLINE | ID: mdl-30773957
Cardiac auscultation is one of the most conventional approaches for the initial assessment of heart disease, however the technique is highly user-dependent and with low repeatability. Several computational approaches based on the analysis of the phonocardiograms (PCG) have been proposed to classify heart sounds into normal or abnormal, but most often do not achieve acceptable levels of sensitivity (Se) and specificity (Sp) or require the use of special hardware. We propose a novel approach for classification of PCG. First, the system makes use of deep neural networks for computing individual cardiac cycle probabilities, followed by classification using weighted probability comparisons. The system was tested on an extended dataset consisting of a balanced sample of 18179 normal and abnormal cycles, achieving Se and Sp values of 91.3% and 93.8% respectively. In addition, the system overcomes previous limitations since it was trained with a balanced sample; also, the decision factor used during the classification stage allows to control the trade-off between Se and Sp, making the proposed system suitable for clinical applications.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fonocardiografia / Ruídos Cardíacos / Aprendizado Profundo Tipo de estudo: Prognostic_studies Idioma: En Revista: J Med Eng Technol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fonocardiografia / Ruídos Cardíacos / Aprendizado Profundo Tipo de estudo: Prognostic_studies Idioma: En Revista: J Med Eng Technol Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Colômbia País de publicação: Reino Unido