Your browser doesn't support javascript.
loading
Towards a Learning Health System to Reduce Emergency Department Visits at a Population Level.
Brannon, Elliott; Wang, Tianshi; Lapedis, Jeremy; Valenstein, Paul; Klinkman, Michael; Bunting, Ellen; Stanulis, Alice; Singh, Karandeep.
Afiliação
  • Brannon E; Department of Learning Health Sciences, University of Michigan, Ann Arbor, MI.
  • Wang T; School of Information, University of Michigan, Ann Arbor, MI.
  • Lapedis J; Center for Healthcare Research & Transformation, Ann Arbor, MI.
  • Valenstein P; Integrated Health Associates, Ann Arbor, MI.
  • Klinkman M; Department of Family Medicine, University of Michigan, Ann Arbor, MI.
  • Bunting E; Michigan Data Collaborative, University of Michigan, Ann Arbor, MI.
  • Stanulis A; Michigan Data Collaborative, University of Michigan, Ann Arbor, MI.
  • Singh K; Department of Learning Health Sciences, University of Michigan, Ann Arbor, MI.
AMIA Annu Symp Proc ; 2018: 295-304, 2018.
Article em En | MEDLINE | ID: mdl-30815068
High utilizers of the Emergency Department (ED) often have complex needs that require coordination of care between multiple organizations. We describe a Learning Health Systems (LHS) approach to reducing ED visits, in which an intervention is delivered to a cohort of high utilizers identified using population-level data and predictive modeling. We focus on the development and validation of a random forest model that utilizes electronic health record data from three health systems across two counties in Michigan to predict the number of ED visits each resident will incur in the next six months. Using 5-fold cross-validation, the model achieves a root-mean-squared-error of 0.51 visits and a mean absolute error of 0.24 visits. Using time-based validation, the model achieves a root-mean-squared error of 0.74 visits and a mean absolute error of 0.29 visits. Patients projected to have high ED utilization are being enrolled in a community-wide care coordination intervention using twelve sites across two counties. We believe that the repeated cycles of modeling and intervention demonstrate an LHS in action.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Administração dos Cuidados ao Paciente / Serviço Hospitalar de Emergência / Registros Eletrônicos de Saúde Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male País/Região como assunto: America do norte Idioma: En Revista: AMIA Annu Symp Proc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Administração dos Cuidados ao Paciente / Serviço Hospitalar de Emergência / Registros Eletrônicos de Saúde Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male País/Região como assunto: America do norte Idioma: En Revista: AMIA Annu Symp Proc Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2018 Tipo de documento: Article País de publicação: Estados Unidos