Wrinkling and folding patterns in a confined ferrofluid droplet with an elastic interface.
Phys Rev E
; 99(2-1): 022608, 2019 Feb.
Article
em En
| MEDLINE
| ID: mdl-30934336
A thin elastic membrane lying on a fluid substrate deviates from its flat geometry on lateral compression. The compressed membrane folds and wrinkles into many distinct morphologies. We study a magnetoelastic variant of such a problem where a viscous ferrofluid, surrounded by a nonmagnetic fluid, is subjected to a radial magnetic field in a Hele-Shaw cell. Elasticity comes into play when the fluids are brought into contact, and due to a chemical reaction, the interface separating them becomes a gel-like elastic layer. A perturbative linear stability theory is used to investigate how the combined action of magnetic and elastic forces can lead to the development of smooth, low-amplitude, sinusoidal wrinkles at the elastic interface. In addition, a nonperturbative vortex sheet approach is employed to examine the emergence of highly nonlinear, magnetically driven, wrinkling and folding equilibrium shape structures. A connection between the magnetoelastic shape solutions induced by a radial magnetic field and those produced by nonmagnetic means through centrifugal forces is also discussed.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Phys Rev E
Ano de publicação:
2019
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Estados Unidos