Your browser doesn't support javascript.
loading
Monitoring Student Activities with Smartwatches: On the Academic Performance Enhancement.
Herrera-Alcántara, Oscar; Barrera-Animas, Ari Yair; González-Mendoza, Miguel; Castro-Espinoza, Félix.
Afiliação
  • Herrera-Alcántara O; Departamento de Sistemas, Universidad Autónoma Metropolitana, Azcapotzalco 02200, Mexico. oha@azc.uam.mx.
  • Barrera-Animas AY; Centro Universitario UAEM Valle de México, Universidad Autónoma del Estado de México, Atizapán 54500, Mexico. oha@azc.uam.mx.
  • González-Mendoza M; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Atizapán 52926, Mexico. oha@azc.uam.mx.
  • Castro-Espinoza F; Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Atizapán 52926, Mexico. ybarrera@tec.mx.
Sensors (Basel) ; 19(7)2019 Apr 03.
Article em En | MEDLINE | ID: mdl-30987130
Motivated by the importance of studying the relationship between habits of students and their academic performance, daily activities of undergraduate participants have been tracked with smartwatches and smartphones. Smartwatches collect data together with an Android application that interacts with the users who provide the labeling of their own activities. The tracked activities include eating, running, sleeping, classroom-session, exam, job, homework, transportation, watching TV-Series, and reading. The collected data were stored in a server for activity recognition with supervised machine learning algorithms. The methodology for the concept proof includes the extraction of features with the discrete wavelet transform from gyroscope and accelerometer signals to improve the classification accuracy. The results of activity recognition with Random Forest were satisfactory (86.9%) and support the relationship between smartwatch sensor signals and daily-living activities of students which opens the possibility for developing future experiments with automatic activity-labeling, and so forth to facilitate activity pattern recognition to propose a recommendation system to enhance the academic performance of each student.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Smartphone / Desempenho Acadêmico / Análise de Dados / Monitorização Fisiológica Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: México País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Smartphone / Desempenho Acadêmico / Análise de Dados / Monitorização Fisiológica Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: México País de publicação: Suíça