Your browser doesn't support javascript.
loading
Emotion Recognition from Multiband EEG Signals Using CapsNet.
Chao, Hao; Dong, Liang; Liu, Yongli; Lu, Baoyun.
Afiliação
  • Chao H; School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China. chaohao@hpu.edu.cn.
  • Dong L; School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China. 211709020013@home.hpu.edu.cn.
  • Liu Y; School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China. liuyongli@hpu.edu.cn.
  • Lu B; School of Computer Science and Technology, Henan Polytechnic University, Jiaozuo 454000, China. luby@hpu.edu.cn.
Sensors (Basel) ; 19(9)2019 May 13.
Article em En | MEDLINE | ID: mdl-31086110
Emotion recognition based on multi-channel electroencephalograph (EEG) signals is becoming increasingly attractive. However, the conventional methods ignore the spatial characteristics of EEG signals, which also contain salient information related to emotion states. In this paper, a deep learning framework based on a multiband feature matrix (MFM) and a capsule network (CapsNet) is proposed. In the framework, the frequency domain, spatial characteristics, and frequency band characteristics of the multi-channel EEG signals are combined to construct the MFM. Then, the CapsNet model is introduced to recognize emotion states according to the input MFM. Experiments conducted on the dataset for emotion analysis using EEG, physiological, and video signals (DEAP) indicate that the proposed method outperforms most of the common models. The experimental results demonstrate that the three characteristics contained in the MFM were complementary and the capsule network was more suitable for mining and utilizing the three correlation characteristics.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eletroencefalografia / Emoções / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Eletroencefalografia / Emoções / Aprendizado de Máquina Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: Sensors (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: China País de publicação: Suíça