Your browser doesn't support javascript.
loading
Where did I get dengue? Detecting spatial clusters of infection risk with social network data.
Souza, Roberto C S N P; Assunção, Renato M; Oliveira, Derick M; Neill, Daniel B; Meira, Wagner.
Afiliação
  • Souza RCSNP; Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. Electronic address: nalon@dcc.ufmg.br.
  • Assunção RM; Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. Electronic address: assuncao@dcc.ufmg.br.
  • Oliveira DM; Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. Electronic address: derickmath@dcc.ufmg.br.
  • Neill DB; Center for Urban Science and Progress, New York University, New York, NY, United States. Electronic address: daniel.neill@nyu.edu.
  • Meira W; Department of Computer Science, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil. Electronic address: meira@dcc.ufmg.br.
Spat Spatiotemporal Epidemiol ; 29: 163-175, 2019 06.
Article em En | MEDLINE | ID: mdl-31128626
Typical spatial disease surveillance systems associate a single address to each disease case reported, usually the residence address. Social network data offers a unique opportunity to obtain information on the spatial movements of individuals as well as their disease status as cases or controls. This provides information to identify visit locations with high risk of infection, even in regions where no one lives such as parks and entertainment zones. We develop two probability models to characterize the high-risk regions. We use a large Twitter dataset from Brazilian users to search for spatial clusters through analysis of the tweets' locations and textual content. We apply our models to both real-world and simulated data, demonstrating the advantage of our models as compared to the usual spatial scan statistic for this type of data.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vigilância da População / Dengue / Rede Social Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Aspecto: Determinantes_sociais_saude Limite: Animals / Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: Spat Spatiotemporal Epidemiol Ano de publicação: 2019 Tipo de documento: Article País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Vigilância da População / Dengue / Rede Social Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Aspecto: Determinantes_sociais_saude Limite: Animals / Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: Spat Spatiotemporal Epidemiol Ano de publicação: 2019 Tipo de documento: Article País de publicação: Holanda