Your browser doesn't support javascript.
loading
Osteopenia-osteoporosis discrimination in postmenopausal women by 1H NMR-based metabonomics.
Pontes, T A; Barbosa, A D; Silva, R D; Melo-Junior, M R; Silva, R O.
Afiliação
  • Pontes TA; Biology Applied to Health Postgraduate Program. LIKA-Laboratory of Immunopatology Keizo Asami. Universidade Federal de Pernambuco, Av Prof Luis Freire, s/n. Cidade Universitaria, Recife-PE, Brazil.
  • Barbosa AD; Biology Applied to Health Postgraduate Program. LIKA-Laboratory of Immunopatology Keizo Asami. Universidade Federal de Pernambuco, Av Prof Luis Freire, s/n. Cidade Universitaria, Recife-PE, Brazil.
  • Silva RD; Fundamental Chemistry Department, CCEN. Chemistry Postgraduate Program. Universidade Federal de Pernambuco. Av. Jornalista Aníbal Fernandes, s/n. Cidade Universitária, Recife-PE, Brazil.
  • Melo-Junior MR; Biology Applied to Health Postgraduate Program. LIKA-Laboratory of Immunopatology Keizo Asami. Universidade Federal de Pernambuco, Av Prof Luis Freire, s/n. Cidade Universitaria, Recife-PE, Brazil.
  • Silva RO; Fundamental Chemistry Department, CCEN. Chemistry Postgraduate Program. Universidade Federal de Pernambuco. Av. Jornalista Aníbal Fernandes, s/n. Cidade Universitária, Recife-PE, Brazil.
PLoS One ; 14(5): e0217348, 2019.
Article em En | MEDLINE | ID: mdl-31141566
This is a report on how 1H NMR-based metabonomics was employed to discriminate osteopenia from osteoporosis in postmenopausal women, identifying the main metabolites associated to the separation between the groups. The Assays were performed using seventy-eight samples, being twenty-eight healthy volunteers, twenty-six osteopenia patients and twenty-four osteoporosis patients. PCA, LDA, PLS-DA and OPLS-DA formalisms were used. PCA discriminated the samples from healthy volunteers from diseased patient samples. Osteopenia-osteoporosis discrimination was only obtained using Analysis Discriminants formalisms, as LDA, PLS-DA and OPLS-DA. The metabonomics model using LDA formalism presented 88.0% accuracy, 88.5% specificity and 88.0% sensitivity. Cross-Validation, however, presented some problems as the accuracy of modeling decreased. LOOCV resulted in 78.0% accuracy. The OPLS-DA based model was better: R2Y and Q2 values equal to 0.871 (p<0.001) and 0.415 (p<0.001). LDA and OPLS-DA indicated the important spectral regions for discrimination, making possible to assign the metabolites involved in the skeletal system homeostasis, as follows: VLDL, LDL, leucine, isoleucine, allantoin, taurine and unsaturated lipids. These results indicate that 1H NMR-based metabonomics can be used as a diagnosis tool to discriminate osteoporosis from osteopenia using a single serum sample.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoporose / Doenças Ósseas Metabólicas / Metabolômica Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Female / Humans / Middle aged Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Osteoporose / Doenças Ósseas Metabólicas / Metabolômica Tipo de estudo: Diagnostic_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Limite: Aged / Female / Humans / Middle aged Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos