Your browser doesn't support javascript.
loading
A modelling approach for correcting reporting delays in disease surveillance data.
Bastos, Leonardo S; Economou, Theodoros; Gomes, Marcelo F C; Villela, Daniel A M; Coelho, Flavio C; Cruz, Oswaldo G; Stoner, Oliver; Bailey, Trevor; Codeço, Claudia T.
Afiliação
  • Bastos LS; Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
  • Economou T; Department of Mathematics, University of Exeter, Exeter, UK.
  • Gomes MFC; Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
  • Villela DAM; Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
  • Coelho FC; School of Applied Mathematics, Getulio Vargas Foundation, Rio de Janeiro, Brazil.
  • Cruz OG; Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
  • Stoner O; Department of Mathematics, University of Exeter, Exeter, UK.
  • Bailey T; Department of Mathematics, University of Exeter, Exeter, UK.
  • Codeço CT; Scientific Computing Program, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
Stat Med ; 38(22): 4363-4377, 2019 09 30.
Article em En | MEDLINE | ID: mdl-31292995
One difficulty for real-time tracking of epidemics is related to reporting delay. The reporting delay may be due to laboratory confirmation, logistical problems, infrastructure difficulties, and so on. The ability to correct the available information as quickly as possible is crucial, in terms of decision making such as issuing warnings to the public and local authorities. A Bayesian hierarchical modelling approach is proposed as a flexible way of correcting the reporting delays and to quantify the associated uncertainty. Implementation of the model is fast due to the use of the integrated nested Laplace approximation. The approach is illustrated on dengue fever incidence data in Rio de Janeiro, and severe acute respiratory infection data in the state of Paraná, Brazil.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teorema de Bayes / Vigilância em Saúde Pública Tipo de estudo: Prognostic_studies / Screening_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Teorema de Bayes / Vigilância em Saúde Pública Tipo de estudo: Prognostic_studies / Screening_studies Limite: Humans Idioma: En Revista: Stat Med Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido