Data-driven remaining useful life prediction via multiple sensor signals and deep long short-term memory neural network.
ISA Trans
; 97: 241-250, 2020 Feb.
Article
em En
| MEDLINE
| ID: mdl-31300159
Remaining useful life (RUL) prediction is very important for improving the availability of a system and reducing its life cycle cost. This paper proposes a deep long short-term memory (DLSTM) network-based RUL prediction method using multiple sensor time series signals. The DLSTM model fuses multi-sensor monitoring signals for accurate RUL prediction, which is able to discover the hidden long-term dependencies among sensor time series signals through deep learning structure. By grid search strategy, the network structure and parameters of the DLSTM are efficiently tuned using an adaptive moment estimation algorithm so as to realize an accurate and robust prediction. Two various turbofan engine datasets are adopted to verify the performance of the DLSTM model. The experimental results demonstrate that the DLSTM model has a competitive performance in comparison with state-of-the-arts reported in literatures and other neural network models.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
ISA Trans
Ano de publicação:
2020
Tipo de documento:
Article
País de publicação:
Estados Unidos