Your browser doesn't support javascript.
loading
Accurate total solar irradiance estimates under irradiance measurements scarcity scenarios.
López, María Laura; Olcese, Luis E; Palancar, Gustavo G; Toselli, Beatriz M.
Afiliação
  • López ML; Facultad de Matemática, Astronomía, Física y Computación, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina. laulopez@famaf.unc.edu.ar.
  • Olcese LE; Instituto de Física Enrique Gaviola (IFEG)/CONICET, Ciudad Universitaria, 5000, Córdoba, Argentina. laulopez@famaf.unc.edu.ar.
  • Palancar GG; Facultad de Ciencias Químicas, Departamento de Físico Química, Universidad Nacional de Córdoba, Ciudad Universitaria, 5000, Córdoba, Argentina.
  • Toselli BM; Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC)/CONICET/CLCM, Ciudad Universitaria, 5000, Córdoba, Argentina.
Environ Monit Assess ; 191(9): 568, 2019 Aug 15.
Article em En | MEDLINE | ID: mdl-31418094
Accurate estimates of total global solar irradiance reaching the Earth's surface are relevant since routine measurements are not always available. This work aimed to determine which of the models used to estimate daily total global solar irradiance (TGSI) is the best model when irradiance measurements are scarce in a given site. A model based on an artificial neural network (ANN) and empirical models based on temperature and sunshine measurements were analyzed and evaluated in Córdoba, Argentina. The performance of the models was benchmarked using different statistical estimators such as the mean bias error (MBE), the mean absolute bias error (MABE), the correlation coefficient (r), the Nash-Sutcliffe equation (NSE), and the statistics t test (t value). The results showed that when enough measurements were available, both the ANN and the empirical models accurately predicted TGSI (with MBE and MABE ≤ |0.11| and ≤ |1.98| kWh m-2 day-1, respectively; NSE ≥ 0.83; r ≥ 0.95; and |t values| < t critical value). However, when few TGSI measurements were available (2, 3, 5, 7, or 10 days per month) only the ANN-based method was accurate (|t value| < t critical value), yielding precise results although only 2 measurements per month were available for 1 year. This model has an important advantage over the empirical models and is very relevant to Argentina due to the scarcity of TGSI measurements.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Luz Solar / Monitoramento Ambiental / Modelos Teóricos Tipo de estudo: Diagnostic_studies / Prognostic_studies País/Região como assunto: America do sul / Argentina Idioma: En Revista: Environ Monit Assess Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Argentina País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Luz Solar / Monitoramento Ambiental / Modelos Teóricos Tipo de estudo: Diagnostic_studies / Prognostic_studies País/Região como assunto: America do sul / Argentina Idioma: En Revista: Environ Monit Assess Assunto da revista: SAUDE AMBIENTAL Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Argentina País de publicação: Holanda