Your browser doesn't support javascript.
loading
Tensor-Based Subspace Tracking for Time-Delay Estimation in GNSS Multi-Antenna Receivers.
Garcez, Caio C R; de Lima, Daniel Valle; Miranda, Ricardo Kehrle; Mendonça, Fábio; da Costa, João Paulo C L; de Almeida, André L F; de Sousa, Rafael T.
Afiliação
  • Garcez CCR; Department of Electrical Engineering, University of Brasília, 70910-900 Brasília, Brazil.
  • de Lima DV; Department of Electrical Engineering, University of Brasília, 70910-900 Brasília, Brazil.
  • Miranda RK; Department of Mechanical Engineering, University of Brasília, 70910-900 Brasília, Brazil.
  • Mendonça F; Department of Electrical Engineering, University of Brasília, 70910-900 Brasília, Brazil.
  • da Costa JPCL; Department of Electrical Engineering, University of Brasília, 70910-900 Brasília, Brazil.
  • de Almeida ALF; Department of Mechanical Engineering, University of Brasília, 70910-900 Brasília, Brazil.
  • de Sousa RT; Department of Telefinformatics Engineering, Federal University of Ceará, 60455-760 Fortaleza, Brazil.
Sensors (Basel) ; 19(23)2019 Nov 20.
Article em En | MEDLINE | ID: mdl-31757108
Although Global Navigation Satellite Systems (GNSS) receivers currently achieve high accuracy when processing their geographic location under line of sight (LOS), multipath interference and noise degrades the accuracy considerably. In order to mitigate multipath interference, receivers based on multiple antennas became the focus of research and technological development. In this context, tensor-based approaches based on Parallel Factor Analysis (PARAFAC) models have been proposed in the literature, providing optimum performance. State-of-the-art techniques for antenna array based GNSS receivers compute singular value decomposition (SVD) for each new sample, implying into a high computational complexity, being, therefore, prohibitive for real-time applications. Therefore, in order to reduce the computational complexity of the parameter estimates, subspace tracking algorithms are essential. In this work, we propose a tensor-based subspace tracking framework to reduce the overall computational complexity of the highly accurate tensor-based time-delay estimation process.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Sensors (Basel) Ano de publicação: 2019 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça