Your browser doesn't support javascript.
loading
Type I Error Probability Spending for Post-Market Drug and Vaccine Safety Surveillance With Poisson Data.
Silva, Ivair R.
Afiliação
  • Silva IR; Department of Statistics, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil.
Methodol Comput Appl Probab ; 20(2): 739-750, 2018 Jun.
Article em En | MEDLINE | ID: mdl-31889890
Statistical sequential hypothesis testing is meant to analyze cumulative data accruing in time. The methods can be divided in two types, group and continuous sequential approaches, and a question that arises is if one approach suppresses the other in some sense. For Poisson stochastic processes, we prove that continuous sequential analysis is uniformly better than group sequential under a comprehensive class of statistical performance measures. Hence, optimal solutions are in the class of continuous designs. This paper also offers a pioneer study that compares classical Type I error spending functions in terms of expected number of events to signal. This was done for a number of tuning parameters scenarios. The results indicate that a log-exp shape for the Type I error spending function is the best choice in most of the evaluated scenarios.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Screening_studies Idioma: En Revista: Methodol Comput Appl Probab Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Screening_studies Idioma: En Revista: Methodol Comput Appl Probab Ano de publicação: 2018 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos