BiORSEO: a bi-objective method to predict RNA secondary structures with pseudoknots using RNA 3D modules.
Bioinformatics
; 36(8): 2451-2457, 2020 04 15.
Article
em En
| MEDLINE
| ID: mdl-31913439
MOTIVATION: RNA loops have been modelled and clustered from solved 3D structures into ordered collections of recurrent non-canonical interactions called 'RNA modules', available in databases. This work explores what information from such modules can be used to improve secondary structure prediction. We propose a bi-objective method for predicting RNA secondary structures by minimizing both an energy-based and a knowledge-based potential. The tool, called BiORSEO, outputs secondary structures corresponding to the optimal solutions from the Pareto set. RESULTS: We compare several approaches to predict secondary structures using inserted RNA modules information: two module data sources, Rna3Dmotif and the RNA 3D Motif Atlas, and different ways to score the module insertions: module size, module complexity or module probability according to models like JAR3D and BayesPairing. We benchmark them against a large set of known secondary structures, including some state-of-the-art tools, and comment on the usefulness of the half physics-based, half data-based approach. AVAILABILITY AND IMPLEMENTATION: The software is available for download on the EvryRNA website, as well as the datasets. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Algoritmos
/
RNA
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Idioma:
En
Revista:
Bioinformatics
Assunto da revista:
INFORMATICA MEDICA
Ano de publicação:
2020
Tipo de documento:
Article
País de afiliação:
França
País de publicação:
Reino Unido