Your browser doesn't support javascript.
loading
BiORSEO: a bi-objective method to predict RNA secondary structures with pseudoknots using RNA 3D modules.
Becquey, Louis; Angel, Eric; Tahi, Fariza.
Afiliação
  • Becquey L; Université Paris-Saclay, Univ Evry, IBISC, 91020, Evry, France.
  • Angel E; Université Paris-Saclay, Univ Evry, IBISC, 91020, Evry, France.
  • Tahi F; Université Paris-Saclay, Univ Evry, IBISC, 91020, Evry, France.
Bioinformatics ; 36(8): 2451-2457, 2020 04 15.
Article em En | MEDLINE | ID: mdl-31913439
MOTIVATION: RNA loops have been modelled and clustered from solved 3D structures into ordered collections of recurrent non-canonical interactions called 'RNA modules', available in databases. This work explores what information from such modules can be used to improve secondary structure prediction. We propose a bi-objective method for predicting RNA secondary structures by minimizing both an energy-based and a knowledge-based potential. The tool, called BiORSEO, outputs secondary structures corresponding to the optimal solutions from the Pareto set. RESULTS: We compare several approaches to predict secondary structures using inserted RNA modules information: two module data sources, Rna3Dmotif and the RNA 3D Motif Atlas, and different ways to score the module insertions: module size, module complexity or module probability according to models like JAR3D and BayesPairing. We benchmark them against a large set of known secondary structures, including some state-of-the-art tools, and comment on the usefulness of the half physics-based, half data-based approach. AVAILABILITY AND IMPLEMENTATION: The software is available for download on the EvryRNA website, as well as the datasets. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / RNA Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: França País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / RNA Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Bioinformatics Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: França País de publicação: Reino Unido