Your browser doesn't support javascript.
loading
A Steering Algorithm for Redirected Walking Using Reinforcement Learning.
IEEE Trans Vis Comput Graph ; 26(5): 1955-1963, 2020 05.
Article em En | MEDLINE | ID: mdl-32078549
Redirected Walking (RDW) steering algorithms have traditionally relied on human-engineered logic. However, recent advances in reinforcement learning (RL) have produced systems that surpass human performance on a variety of control tasks. This paper investigates the potential of using RL to develop a novel reactive steering algorithm for RDW. Our approach uses RL to train a deep neural network that directly prescribes the rotation, translation, and curvature gains to transform a virtual environment given a user's position and orientation in the tracked space. We compare our learned algorithm to steer-to-center using simulated and real paths. We found that our algorithm outperforms steer-to-center on simulated paths, and found no significant difference on distance traveled on real paths. We demonstrate that when modeled as a continuous control problem, RDW is a suitable domain for RL, and moving forward, our general framework provides a promising path towards an optimal RDW steering algorithm.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Caminhada / Realidade Virtual / Aprendizado Profundo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: IEEE Trans Vis Comput Graph Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Algoritmos / Caminhada / Realidade Virtual / Aprendizado Profundo Tipo de estudo: Prognostic_studies Limite: Humans Idioma: En Revista: IEEE Trans Vis Comput Graph Assunto da revista: INFORMATICA MEDICA Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos