Your browser doesn't support javascript.
loading
Random access with a distributed Bitmap Join Index for Star Joins.
Brito, Jaqueline J; Mosqueiro, Thiago; Ciferri, Ricardo R; Ciferri, Cristina D A.
Afiliação
  • Brito JJ; University of São Paulo, São Carlos, Brazil.
  • Mosqueiro T; University of California Los Angeles, Los Angeles, USA.
  • Ciferri RR; Federal University of São Carlos, São Carlos, Brazil.
  • Ciferri CDA; University of São Paulo, São Carlos, Brazil.
Heliyon ; 6(2): e03342, 2020 Feb.
Article em En | MEDLINE | ID: mdl-32099915
Indices improve the performance of relational databases, especially on queries that return a small portion of the data (i.e., low-selectivity queries). Star joins are particularly expensive operations that commonly rely on indices for improved performance at scale. The development and support of index-based solutions for Star Joins are still at very early stages. To address this gap, we propose a distributed Bitmap Join Index (dBJI) and a framework-agnostic strategy to solve join predicates in linear time. For empirical analysis, we used common Hadoop technologies (e.g., HBase and Spark) to show that dBJI significantly outperforms full scan approaches by a factor between 59% and 88% in queries with low selectivity from the Star Schema Benchmark (SSB). Thus, distributed indices may significantly enhance low-selectivity query performance even in very large databases.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Revista: Heliyon Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Revista: Heliyon Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido