Your browser doesn't support javascript.
loading
GeoSES: A socioeconomic index for health and social research in Brazil.
Barrozo, Ligia Vizeu; Fornaciali, Michel; de André, Carmen Diva Saldiva; Morais, Guilherme Augusto Zimeo; Mansur, Giselle; Cabral-Miranda, William; de Miranda, Marina Jorge; Sato, João Ricardo; Amaro Júnior, Edson.
Afiliação
  • Barrozo LV; Departamento de Geografia, Faculdade de Filosofia, Letras e Ciências Humanas, Universidade de São Paulo, São Paulo, SP, Brazil.
  • Fornaciali M; Programa de Apoio ao Desenvolvimento Institucional do SUS (PROADI-SUS), São Paulo, Brazil.
  • de André CDS; Instituto de Estudos Avançados, Universidade de São Paulo, São Paulo, SP, Brazil.
  • Morais GAZ; Hospital Israelita Albert Einstein-Big Data Analytics, Morumbi, São Paulo, SP, Brazil.
  • Mansur G; Departamento de Estatística, Instituto de Matemática e Estatística, Universidade de São Paulo, São Paulo, SP, Brazil.
  • Cabral-Miranda W; Hospital Israelita Albert Einstein-Big Data Analytics, Morumbi, São Paulo, SP, Brazil.
  • de Miranda MJ; Departamento de Geografia, Faculdade de Filosofia, Letras e Ciências Humanas, Universidade de São Paulo, São Paulo, SP, Brazil.
  • Sato JR; Programa de Apoio ao Desenvolvimento Institucional do SUS (PROADI-SUS), São Paulo, Brazil.
  • Amaro Júnior E; Departamento de Geografia, Faculdade de Filosofia, Letras e Ciências Humanas, Universidade de São Paulo, São Paulo, SP, Brazil.
PLoS One ; 15(4): e0232074, 2020.
Article em En | MEDLINE | ID: mdl-32348328
The individual's socioeconomic conditions are the most relevant to predict the quality of someone's health. However, such information is not usually found in medical records, making studies in the area difficult. Therefore, it is common to use composite indices that characterize a region socioeconomically, such as the Human Development Index (HDI). The main advantage of the HDI is its understanding and adoption on a global scale. However, its applicability is limited for health studies since its longevity dimension presents mathematical redundancy in regression models. Here we introduce the GeoSES, a composite index that summarizes the main dimensions of the Brazilian socioeconomic context for research purposes. We created the index from the 2010 Brazilian Census, whose variables selection was guided by theoretical references for health studies. The proposed index incorporates seven socioeconomic dimensions: education, mobility, poverty, wealth, income, segregation, and deprivation of resources and services. We developed the GeoSES using Principal Component Analysis and evaluated its construct, content, and applicability. GeoSES is defined at three scales: national (GeoSES-BR), Federative Unit (GeoSES-FU), and intra-municipal (GeoSES-IM). GeoSES-BR dimensions showed a good association with HDI-M (correlation above 0.85). The model with the poverty dimension best explained the relative risk of avoidable cause mortality in Brazil. In the intra-municipal scale, the model with GeoSES-IM was the one that best explained the relative risk of mortality from circulatory system diseases. By applying spatial regressions, we demonstrated that GeoSES shows significant explanatory potential in the studied scales, being a compelling complement for future researches in public health.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pobreza / Ciências Sociais / Fatores Socioeconômicos / Determinantes Sociais da Saúde Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Aspecto: Determinantes_sociais_saude / Equity_inequality Limite: Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Pobreza / Ciências Sociais / Fatores Socioeconômicos / Determinantes Sociais da Saúde Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Aspecto: Determinantes_sociais_saude / Equity_inequality Limite: Humans País/Região como assunto: America do sul / Brasil Idioma: En Revista: PLoS One Assunto da revista: CIENCIA / MEDICINA Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos