Your browser doesn't support javascript.
loading
Co-Expression Networks for Causal Gene Identification Based on RNA-Seq Data of Corynebacterium pseudotuberculosis.
Franco, Edian F; Rana, Pratip; Queiroz Cavalcante, Ana Lidia; da Silva, Artur Luiz; Cybelle Pinto Gomide, Anne; Carneiro Folador, Adriana R; Azevedo, Vasco; Ghosh, Preetam; T J Ramos, Rommel.
Afiliação
  • Franco EF; Institute of Biological Sciences, Federal University of Para, Belem 66075-110, PA, Brazil.
  • Rana P; Biological Engineering Laboratory, Science and Technology Park Guama, Belem 66075-750, PA, Brazil.
  • Queiroz Cavalcante AL; Instituto Tecnológico de Santo Domingo (INTEC), Santo Domingo 10602, DN, Dominican Republic.
  • da Silva AL; Department of Computer Science, Virginia Commonwealth University, Richmond, VA 23284, USA.
  • Cybelle Pinto Gomide A; Institute of Biological Sciences, Federal University of Para, Belem 66075-110, PA, Brazil.
  • Carneiro Folador AR; Biological Engineering Laboratory, Science and Technology Park Guama, Belem 66075-750, PA, Brazil.
  • Azevedo V; Institute of Biological Sciences, Federal University of Para, Belem 66075-110, PA, Brazil.
  • Ghosh P; Biological Engineering Laboratory, Science and Technology Park Guama, Belem 66075-750, PA, Brazil.
  • T J Ramos R; Institute of Biological Science, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil.
Genes (Basel) ; 11(7)2020 07 14.
Article em En | MEDLINE | ID: mdl-32674507
Corynebacterium pseudotuberculosis is a Gram-positive bacterium that causes caseous lymphadenitis, a disease that predominantly affects sheep, goat, cattle, buffalo, and horses, but has also been recognized in other animals. This bacterium generates a severe economic impact on countries producing meat. Gene expression studies using RNA-Seq are one of the most commonly used techniques to perform transcriptional experiments. Computational analysis of such data through reverse-engineering algorithms leads to a better understanding of the genome-wide complexity of gene interactomes, enabling the identification of genes having the most significant functions inferred by the activated stress response pathways. In this study, we identified the influential or causal genes from four RNA-Seq datasets from different stress conditions (high iron, low iron, acid, osmosis, and PH) in C. pseudotuberculosis, using a consensus-based network inference algorithm called miRsigand next identified the causal genes in the network using the miRinfluence tool, which is based on the influence diffusion model. We found that over 50% of the genes identified as influential had some essential cellular functions in the genomes. In the strains analyzed, most of the causal genes had crucial roles or participated in processes associated with the response to extracellular stresses, pathogenicity, membrane components, and essential genes. This research brings new insight into the understanding of virulence and infection by C. pseudotuberculosis.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Corynebacterium pseudotuberculosis / Infecções por Corynebacterium / RNA-Seq / Linfadenite Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Revista: Genes (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Corynebacterium pseudotuberculosis / Infecções por Corynebacterium / RNA-Seq / Linfadenite Tipo de estudo: Diagnostic_studies Limite: Animals Idioma: En Revista: Genes (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça