Your browser doesn't support javascript.
loading
Asynchronous dissipative filtering for nonhomogeneous Markov switching neural networks with variable packet dropouts.
Zhou, Xia; Cheng, Jun; Cao, Jinde; Ragulskis, Minvydas.
Afiliação
  • Zhou X; School of Mathematics and Computing Science, Guilin University of Electronic Technology, Guilin, 541004, China. Electronic address: xiazhou201612@guet.edu.cn.
  • Cheng J; College of Mathematics and Statistics, Guangxi Normal University, Guilin, 541006, China. Electronic address: jcheng@gxnu.edu.cn.
  • Cao J; School of Mathematics, Southeast University, Nanjing 21189, China. Electronic address: jdcao@seu.edu.cn.
  • Ragulskis M; Center for Nonlinear Systems, Kaunas University of Technology, Studentu 50-146, LT-51368 Kaunas, Lithuania. Electronic address: minvydas.ragulskis@ktu.lt.
Neural Netw ; 130: 229-237, 2020 Oct.
Article em En | MEDLINE | ID: mdl-32693351
This work focuses on the problem of asynchronous filtering for nonhomogeneous Markov switching neural networks with variable packet dropouts (VPDs). The discrete-time nonhomogeneous Markov process is adopted to depict the modes switching of target plant, where time-varying transition probabilities are revealed by utilizing a polytope technology. By means of the Bernoulli distributed sequence, the randomly occurring packet dropouts are presented, where VPD rates are mode-dependent and remain variable. Unlike the existing results, the hidden Markov model scheme is formulated to describe the asynchronization between nonhomogeneous neural networks and filter, and resilient filters are presented, which makes the designed filters more general. Eventually, a simulation example is established to verify the effectiveness of the developed filter scheme.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cadeias de Markov / Redes Neurais de Computação Tipo de estudo: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Neural Netw Assunto da revista: NEUROLOGIA Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cadeias de Markov / Redes Neurais de Computação Tipo de estudo: Health_economic_evaluation / Prognostic_studies Idioma: En Revista: Neural Netw Assunto da revista: NEUROLOGIA Ano de publicação: 2020 Tipo de documento: Article País de publicação: Estados Unidos