Your browser doesn't support javascript.
loading
Deep Learning the Hohenberg-Kohn Maps of Density Functional Theory.
Moreno, Javier Robledo; Carleo, Giuseppe; Georges, Antoine.
Afiliação
  • Moreno JR; Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA.
  • Carleo G; Center for Quantum Phenomena, Department of Physics, New York University, 726 Broadway, New York, New York 10003, USA.
  • Georges A; Center for Computational Quantum Physics, Flatiron Institute, New York, New York 10010, USA.
Phys Rev Lett ; 125(7): 076402, 2020 Aug 14.
Article em En | MEDLINE | ID: mdl-32857556
A striking consequence of the Hohenberg-Kohn theorem of density functional theory is the existence of a bijection between the local density and the ground-state many-body wave function. Here we study the problem of constructing approximations to the Hohenberg-Kohn map using a statistical learning approach. Using supervised deep learning with synthetic data, we show that this map can be accurately constructed for a chain of one-dimensional interacting spinless fermions in different phases of this model including the charge ordered Mott insulator and metallic phases and the critical point separating them. However, we also find that the learning is less effective across quantum phase transitions, suggesting an intrinsic difficulty in efficiently learning nonsmooth functional relations. We further study the problem of directly reconstructing complex observables from simple local density measurements, proposing a scheme amenable to statistical learning from experimental data.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Revista: Phys Rev Lett Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Estados Unidos País de publicação: Estados Unidos