Your browser doesn't support javascript.
loading
Antioxidant effect of Resveratrol: Change in MAPK cell signaling pathway during the aging process.
Santos, Milena Almeida; Franco, Filipe Nogueira; Caldeira, Camila Amaro; de Araújo, Glaucy Rodrigues; Vieira, Alessandra; Chaves, Miriam Martins; Lara, Raquel Cunha.
Afiliação
  • Santos MA; Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG, Brazil.
  • Franco FN; Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG, Brazil.
  • Caldeira CA; Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG, Brazil.
  • de Araújo GR; Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG, Brazil.
  • Vieira A; Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG, Brazil.
  • Chaves MM; Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG, Brazil. Electronic address: chavesmm@globo.com.
  • Lara RC; Biochemistry Laboratory of Aging and Correlated Diseases, Department of Biochemistry and Immunology, Biological Sciences Institute, Federal University of Minas Gerais, Av. Antônio Carlos 6627, CP 486, 30161-970, Belo Horizonte, MG, Brazil.
Arch Gerontol Geriatr ; 92: 104266, 2021.
Article em En | MEDLINE | ID: mdl-33070070
Aging is characterized by a progressive loss of physiological integrity. One common denominator is the increase of reactive oxygen species (ROS) caused by inhibition of important antioxidant pathways. Resveratrol is a polyphenol known for its potent antioxidant activity. However, antioxidant pathways activated by them change with aging. The objective of our study was to verify the antioxidant effect of resveratrol in an oxidative stress environment in Human Mononuclear Cells (PBMC) from donors with different ages. Resveratrol (5 µM), a stimulus with H2O2 (0,64 % v/v) in addition to inhibitors of PKA, AkT/PKB and MAPK signaling pathways were used in chemiluminescence assay. An incresed basal production of ROS was observed in the elderly than in the middle-aged group. Resveratrol was able to reduce ROS in both groups, but with greater efficiency in the middle-aged group. By inhibiting PKA, Akt/PKB and MAPK signaling pathways we observed that resveratrol presented an altered performance in the aging process, changing signaling pattern of MAPK pathway.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estilbenos / Antioxidantes Limite: Aged / Humans / Middle aged Idioma: En Revista: Arch Gerontol Geriatr Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Estilbenos / Antioxidantes Limite: Aged / Humans / Middle aged Idioma: En Revista: Arch Gerontol Geriatr Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda