Your browser doesn't support javascript.
loading
Machine learning in classification and identification of nonconventional vegetables.
Ossani, Paulo César; de Souza, Douglas Correa; Rossoni, Diogo Francisco; Resende, Luciane Vilela.
Afiliação
  • Ossani PC; Department of Statistics, State University of Maringá, Av. Colombo, 5790, Bloco E-90, University Campus, Maringá, Paraná, 87020-900, Brazil.
  • de Souza DC; Department of Agriculture, Federal University of Lavras, UFLA, University Campus, s/n, mailbox 3037, Lavras, MG, 37200-000, Brazil.
  • Rossoni DF; Department of Statistics, State University of Maringá, Av. Colombo, 5790, Bloco E-90, University Campus, Maringá, Paraná, 87020-900, Brazil.
  • Resende LV; Department of Agriculture, Federal University of Lavras, UFLA, University Campus, s/n, mailbox 3037, Lavras, MG, 37200-000, Brazil.
J Food Sci ; 85(12): 4194-4200, 2020 Dec.
Article em En | MEDLINE | ID: mdl-33174205
Vegetables are important in economic, social, and nutritional matters in both the Brazilian and international scenes. Hence, some researches have been carried out in order to encourage the production and consumption of different species such as nonconventional vegetables. These vegetables have an added value because of their nutritional quality and nostalgic appeal due to the reintroduction of these species. For this reason, this article proposes the use of the machine learning technique in the construction of models for supervised classification and identification in an experiment with five leafy special of nonconventional vegetables (Tropaeolum majus, Rumex acetosa, Stachys byzantina, Lactuca cf. indica e Pereskia aculeata) assessing the characteristics of the macro and micro nutrients. In order to evaluate the classifiers' performance, the cross-validation procedure via Monte Carlo simulation was considered to confirm the model. In ten replications, the success and error rates were obtained, considering the false positive and false negative rates, sensibility, and accuracy of the classification method. Thus, it was concluded that the use of machine learning is viable because it allows the classification and identification of nonconventional vegetables using few nutritional attributes and obtaining a success rate of over 89% in most of the classifiers tested.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Verduras / Aprendizado de Máquina / Valor Nutritivo Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Food Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Verduras / Aprendizado de Máquina / Valor Nutritivo Tipo de estudo: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Food Sci Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Estados Unidos