Selecting 'convenient observers' to probe the atomic structure of CVD graphene on Ir(111) via photoelectron diffraction.
J Phys Condens Matter
; 33(10): 105001, 2021 Mar 10.
Article
em En
| MEDLINE
| ID: mdl-33254156
CVD graphene grown on metallic substrates presents, in several cases, a long-range periodic structure due to a lattice mismatch between the graphene and the substrate. For instance, graphene grown on Ir(111), displays a corrugated supercell with distinct adsorption sites due to a variation of its local electronic structure. This type of surface reconstruction represents a challenging problem for a detailed atomic surface structure determination for experimental and theoretical techniques. In this work, we revisited the surface structure determination of graphene on Ir(111) by using the unique advantage of surface and chemical selectivity of synchrotron-based photoelectron diffraction. We take advantage of the Ir 4f photoemission surface state and use its diffraction signal as a probe to investigate the atomic arrangement of the graphene topping layer. We determine the average height and the overall corrugation of the graphene layer, which are respectively equal to 3.40 ± 0.11 Å and 0.45 ± 0.03 Å. Furthermore, we explore the graphene topography in the vicinity of its high-symmetry adsorption sites and show that the experimental data can be described by three reduced systems simplifying the moiré supercell multiple scattering analysis.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
J Phys Condens Matter
Assunto da revista:
BIOFISICA
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Reino Unido