A Sequential Algorithm for Signal Segmentation.
Entropy (Basel)
; 20(1)2018 Jan 12.
Article
em En
| MEDLINE
| ID: mdl-33265142
The problem of event detection in general noisy signals arises in many applications; usually, either a functional form of the event is available, or a previous annotated sample with instances of the event that can be used to train a classification algorithm. There are situations, however, where neither functional forms nor annotated samples are available; then, it is necessary to apply other strategies to separate and characterize events. In this work, we analyze 15-min samples of an acoustic signal, and are interested in separating sections, or segments, of the signal which are likely to contain significant events. For that, we apply a sequential algorithm with the only assumption that an event alters the energy of the signal. The algorithm is entirely based on Bayesian methods.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Tipo de estudo:
Prognostic_studies
Idioma:
En
Revista:
Entropy (Basel)
Ano de publicação:
2018
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Suíça