Your browser doesn't support javascript.
loading
Deep Learning Predicts Underlying Features on Pathology Images with Therapeutic Relevance for Breast and Gastric Cancer.
Valieris, Renan; Amaro, Lucas; Osório, Cynthia Aparecida Bueno de Toledo; Bueno, Adriana Passos; Rosales Mitrowsky, Rafael Andres; Carraro, Dirce Maria; Nunes, Diana Noronha; Dias-Neto, Emmanuel; Silva, Israel Tojal da.
Afiliação
  • Valieris R; Laboratory of Computational Biology Bioinformatics, CIPE/A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil.
  • Amaro L; Laboratory of Computational Biology Bioinformatics, CIPE/A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil.
  • Osório CABT; Department of Pathology, CIPE/A.C. Camargo Cancer Center, São Paulo 01525-001, Brazil.
  • Bueno AP; Laboratory of Computational Biology Bioinformatics, CIPE/A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil.
  • Rosales Mitrowsky RA; Department of Pathology, CIPE/A.C. Camargo Cancer Center, São Paulo 01525-001, Brazil.
  • Carraro DM; Department of Computation and Mathematics, University of São Paulo, Ribeirão Preto 14040-901, Brazil.
  • Nunes DN; Laboratory of Genomics and Molecular Biology, CIPE/A.C. Camargo Cancer Center, São Paulo 01508-010, Brazil.
  • Dias-Neto E; Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo 01525-001, Brazil.
  • Silva ITD; Medical Genomics Laboratory, CIPE/A.C. Camargo Cancer Center, São Paulo 01525-001, Brazil.
Cancers (Basel) ; 12(12)2020 Dec 09.
Article em En | MEDLINE | ID: mdl-33316873
DNA repair deficiency (DRD) is an important driver of carcinogenesis and an efficient target for anti-tumor therapies to improve patient survival. Thus, detection of DRD in tumors is paramount. Currently, determination of DRD in tumors is dependent on wet-lab assays. Here we describe an efficient machine learning algorithm which can predict DRD from histopathological images. The utility of this algorithm is demonstrated with data obtained from 1445 cancer patients. Our method performs rather well when trained on breast cancer specimens with homologous recombination deficiency (HRD), AUC (area under curve) = 0.80. Results for an independent breast cancer cohort achieved an AUC = 0.70. The utility of our method was further shown by considering the detection of mismatch repair deficiency (MMRD) in gastric cancer, yielding an AUC = 0.81. Our results demonstrate the capacity of our learning-base system as a low-cost tool for DRD detection.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Cancers (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Cancers (Basel) Ano de publicação: 2020 Tipo de documento: Article País de afiliação: Brasil País de publicação: Suíça