Your browser doesn't support javascript.
loading
Tube-in-tube membrane photoreactor as a new technology to boost sulfate radical advanced oxidation processes.
Lumbaque, Elisabeth Cuervo; Lüdtke, Diogo S; Dionysiou, Dionysios D; Vilar, Vítor J P; Sirtori, Carla.
Afiliação
  • Lumbaque EC; Instituto de Química - Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre, RS 9500, Brazil.
  • Lüdtke DS; Instituto de Química - Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre, RS 9500, Brazil.
  • Dionysiou DD; Environmental Engineering and Science Program, University of Cincinnati, Cincinnati, OH 45221-0012, USA.
  • Vilar VJP; Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials (LSRE-LCM), Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua do Dr. Roberto Frias, Porto 4200-465, Portugal. Electronic address: vilar@fe.up.pt.
  • Sirtori C; Instituto de Química - Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, Porto Alegre, RS 9500, Brazil. Electronic address: carla.sirtori@ufrgs.br.
Water Res ; 191: 116815, 2021 Mar 01.
Article em En | MEDLINE | ID: mdl-33482587
This work proposes a tube-in-tube membrane photoreactor, operated in a continuous-mode, to boost the efficiency of peroxydisulfate (PDS), through the photolytic (UV-C radiation) and photocatalytic (TiO2-P25) processes. This new technology can efficiently facilitate the transportation of PDS to the catalyst surface and water to be treated. The ultrafiltration tubular ceramic membrane was used as support for the TiO2-P25 and oxidant-catalyst/water contactor. Tests were performed using a synthetic solution and a municipal secondary effluent, both spiked with a pharmaceutical mix solution (paracetamol (PCT), furosemide (FRS), nimesulide (NMD), and diazepam (DZP); 200 µg L-1 of each). At steady-state regime, the UVC/S2O82-/TiO2 system, with radial PDS addition, showed the highest removal of pharmaceuticals in both matrices. Furthermore, twenty-two transformation products (TPs) were identified by applying LC-QTOF MS technique. Hence, the transformation pathways including hydroxylation in aromatic moiety by an electrophilic attack, electron transfer reactions, cleavage of C-O, C-N bond, H-abstraction and ring opening were proposed. TPs chemical structures were evaluated by in silico (Q)SAR approach using TOXTREE and EPI Suite™ software.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Peróxido de Hidrogênio Idioma: En Revista: Water Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Poluentes Químicos da Água / Peróxido de Hidrogênio Idioma: En Revista: Water Res Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Reino Unido