Tube-in-tube membrane photoreactor as a new technology to boost sulfate radical advanced oxidation processes.
Water Res
; 191: 116815, 2021 Mar 01.
Article
em En
| MEDLINE
| ID: mdl-33482587
This work proposes a tube-in-tube membrane photoreactor, operated in a continuous-mode, to boost the efficiency of peroxydisulfate (PDS), through the photolytic (UV-C radiation) and photocatalytic (TiO2-P25) processes. This new technology can efficiently facilitate the transportation of PDS to the catalyst surface and water to be treated. The ultrafiltration tubular ceramic membrane was used as support for the TiO2-P25 and oxidant-catalyst/water contactor. Tests were performed using a synthetic solution and a municipal secondary effluent, both spiked with a pharmaceutical mix solution (paracetamol (PCT), furosemide (FRS), nimesulide (NMD), and diazepam (DZP); 200 µg L-1 of each). At steady-state regime, the UVC/S2O82-/TiO2 system, with radial PDS addition, showed the highest removal of pharmaceuticals in both matrices. Furthermore, twenty-two transformation products (TPs) were identified by applying LC-QTOF MS technique. Hence, the transformation pathways including hydroxylation in aromatic moiety by an electrophilic attack, electron transfer reactions, cleavage of C-O, C-N bond, H-abstraction and ring opening were proposed. TPs chemical structures were evaluated by in silico (Q)SAR approach using TOXTREE and EPI Suite™ software.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Poluentes Químicos da Água
/
Peróxido de Hidrogênio
Idioma:
En
Revista:
Water Res
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
Brasil
País de publicação:
Reino Unido