The Dissipative Photochemical Origin of Life: UVC Abiogenesis of Adenine.
Entropy (Basel)
; 23(2)2021 Feb 10.
Article
em En
| MEDLINE
| ID: mdl-33579010
The non-equilibrium thermodynamics and the photochemical reaction mechanisms are described which may have been involved in the dissipative structuring, proliferation and complexation of the fundamental molecules of life from simpler and more common precursors under the UVC photon flux prevalent at the Earth's surface at the origin of life. Dissipative structuring of the fundamental molecules is evidenced by their strong and broad wavelength absorption bands in the UVC and rapid radiationless deexcitation. Proliferation arises from the auto- and cross-catalytic nature of the intermediate products. Inherent non-linearity gives rise to numerous stationary states permitting the system to evolve, on amplification of a fluctuation, towards concentration profiles providing generally greater photon dissipation through a thermodynamic selection of dissipative efficacy. An example is given of photochemical dissipative abiogenesis of adenine from the precursor HCN in water solvent within a fatty acid vesicle floating on a hot ocean surface and driven far from equilibrium by the incident UVC light. The kinetic equations for the photochemical reactions with diffusion are resolved under different environmental conditions and the results analyzed within the framework of non-linear Classical Irreversible Thermodynamic theory.
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Idioma:
En
Revista:
Entropy (Basel)
Ano de publicação:
2021
Tipo de documento:
Article
País de afiliação:
México
País de publicação:
Suíça