Your browser doesn't support javascript.
loading
Two gas metal arc welding process dataset of arc parameters and input parameters.
Thompson Martinez, Rogfel; Alvarez Bestard, Guillermo; Absi Alfaro, Sadek C.
Afiliação
  • Thompson Martinez R; Postgraduate Program in Mechatronic System (PPMEC), Student grant CAPES, University of Brasilia, Brazil.
  • Alvarez Bestard G; Electronics Engineering, Campus Gama, University of Brasilia, Brazil.
  • Absi Alfaro SC; Department of Mechanical Engineering, University of Brasilia, Brazil.
Data Brief ; 35: 106790, 2021 Apr.
Article em En | MEDLINE | ID: mdl-33614869
The dataset was collected from experiments using the gas metal arc welding (GMAW) process. The experiments were planned with Central Composite Design to obtain a greater variety of data. This variability helps to develop a predictive model more generalistic with machine learning techniques. It was collected welding arc images and weld bead geometry images. Welding arc images were processed with a deep learning technique to detect drop detachment and short circuit transfer mode. These detections were useful to calc drop detachment frequency, short circuit frequency, and molten volume in every moment of GMAW process time. It was obtained the weld bead geometry parameters by process time too. All these data, joining input parameters were correlated, resulting in the datasets shown in this article.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Data Brief Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Tipo de estudo: Prognostic_studies Idioma: En Revista: Data Brief Ano de publicação: 2021 Tipo de documento: Article País de afiliação: Brasil País de publicação: Holanda