Your browser doesn't support javascript.
loading
Macromolecules Structural Classification With a 3D Dilated Dense Network in Cryo-Electron Tomography.
Article em En | MEDLINE | ID: mdl-33729943
Cryo-electron tomography, combined with subtomogram averaging (STA), can reveal three-dimensional (3D) macromolecule structures in the near-native state from cells and other biological samples. In STA, to get a high-resolution 3D view of macromolecule structures, diverse macromolecules captured by the cellular tomograms need to be accurately classified. However, due to the poor signal-to-noise-ratio (SNR) and severe ray artifacts in the tomogram, it remains a major challenge to classify macromolecules with high accuracy. In this paper, we propose a new convolutional neural network, named 3D-Dilated-DenseNet, to improve the performance of macromolecule classification. In 3D-Dilated-DenseNet, there are two key strategies to guarantee macromolecule classification accuracy: 1) Using dense connections to enhance feature map utilization (corresponding to the baseline 3D-C-DenseNet); 2) Adopting dilated convolution to enrich multi-level information in feature maps. We tested 3D-Dilated-DenseNet and 3D-C-DenseNet both on synthetic data and experimental data. The results show that, on synthetic data, compared with the state-of-the-art method in the SHREC contest (SHREC-CNN), both 3D-C-DenseNet and 3D-Dilated-DenseNet outperform SHREC-CNN. In particular, 3D-Dilated-DenseNet improves 0.393 of F1 metric on tiny-size macromolecules and 0.213 on small-size macromolecules. On experimental data, compared with 3D-C-DenseNet, 3D-Dilated-DenseNet can increase classification performance by 2.1 percent.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Tomografia com Microscopia Eletrônica Idioma: En Revista: ACM Trans Comput Biol Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de publicação: Estados Unidos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Redes Neurais de Computação / Tomografia com Microscopia Eletrônica Idioma: En Revista: ACM Trans Comput Biol Bioinform Assunto da revista: BIOLOGIA / INFORMATICA MEDICA Ano de publicação: 2022 Tipo de documento: Article País de publicação: Estados Unidos